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Abstract: Time-resolved (TR) spectroscopy is well-suited to address the challenges of quan-
tifying light absorbers in highly scattering media such as living tissue; however, current TR
spectrometers are either based on expensive array detectors or rely on wavelength scanning.
Here, we introduce a TR spectrometer architecture based on compressed sensing (CS) and time-
correlated single-photon counting. Using both CS and basis scanning, we demonstrate that—in
homogeneous and two-layer tissue-mimicking phantoms made of Intralipid and Indocyanine
Green—the CS method agrees with or outperforms uncompressed approaches. Further, we
illustrate the superior depth sensitivity of TR spectroscopy and highlight the potential of the
device to quantify absorption changes in deeper (>1 cm) tissue layers.

© 2021 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Optical spectroscopy is a powerful tool for non-destructive quantitative analysis of highly
scattering (i.e., turbid) media including food [1], pharmaceutical compounds [2,3], and living
tissues [4–8]. Notably, the use of near-infrared spectroscopy (NIRS) to quantify tissue hemoglobin
concentration and oxygenation has grown significantly from laboratory devices [9–11] to clinical
tools [12–16]. Nevertheless, since light propagation in turbid media is dominated by scattering,
accurate quantification of optical absorbers in such media remains challenging.

The concentration of a light absorber (i.e., chromophore) in a sample is directly related to the
sample’s absorption coefficient; however, in highly scattering media the optical pathlength is
much longer than the distance between the points of light’s entry into and exit out of the medium.
Thus, the classic approach of quantifying chromophore concentrations with the Beer-Lambert
law cannot be readily applied. Furthermore, when multiple chromophores are present—as is
typical in living tissues—multi-wavelength and even hyperspectral capabilities may be required
for accurate chromophore quantification. Though it is possible to quantify chromophores using
only a few wavelengths, acquiring measurements at dozens of wavelengths enables the use of
spectral features to better constrain spectroscopic analysis and reduce crosstalk between various
chromophores, while also enabling the use of approaches such as derivative spectroscopy [17–20].

Optical spectroscopy techniques used to measure the concentration of light absorbers in turbid
media can, despite their diversity, be divided into three categories: continuous-wave (CW),
frequency-domain (FD), and time-resolved (TR). Of these techniques, TR methods —where
picosecond light pulses are injected into the sample—have the highest information content and
are considered the "gold-standard" for chromophore quantification in turbid media. Further, since
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TR techniques can quantify the time-of-flight of photons, they allow the use of time-windowing
to separate contributions from different layers of the medium [21–23]. Nevertheless, these
advantages come at the cost of added complexity and expense, particularly for hyperspectral TR
systems.

Hyperspectral TR devices are typically built using a pulsed supercontinuum laser as a light
source and a streak camera [24–28] or a time-correlated single-photon counting (TCSPC) module
[19,29–31] for detection. In TCSPC measurements, the intensity of the light source is typically
adjusted such that the probability of detecting one photon per light pulse is substantially less
than one, and the probability of detecting more than one photon is negligible; as such, TCSPC
operates under the assumption that only one photon is detected per signal period [32]. Sensitive
detectors—such as photomultiplier tubes (PMT), single-photon avalanche photodiode (SPAD)
arrays, or silicon photomultipliers (SiPM)—and high-precision timing electronics are then used to
measure the arrival time of each detected photon in order to build a histogram of arrival times (i.e.,
a distribution of times-of-flight of photons; DTOF). Previous implementations of TCSPC-based
hyperspectral TR-NIR spectroscopy were based on wavelength scanning [19,30]; however, for
biomedical applications, the broad spectral features of the main chromophores of interest (e.g.,
hemoglobin, water, fat) suggest that the measurements are sparse in the spectral domain and might
be acquired more efficiently using compressive sensing (CS) [33]. CS leverages the sparsity of a
signal to measure it with fewer samples than what is required using traditional data acquisition
methods based on the Shannon-Nyquist sampling theorem [34–36]. This drastically reduces
both the acquisition time and the size of the dataset. Given these benefits, the combination of
CS and diffuse optical imaging has been used in a wide variety of biomedical applications, as
summarized by Angelo et al. [37]. Notably, Pian et al. recently presented a hyperspectral TR
fluorescence lifetime imaging system based on CS and TCSPC [38]. In their report, Pian et al.
utilized CS for compression in the spatial domain; however, the application of CS to the spectral
domain for TR-NIR spectroscopy remains unexplored.

Leveraging recent advances in TCSPC and CS, this study presents the development and
characterization of a hyperspectral TR spectrometer based on a CS-capable architecture. The
spectral accuracy and resolution of the spectrometer were characterized using a calibrated spectral
source. Next, the spectrometer’s ability to accurately quantify the absorption coefficient of turbid
media over a wide spectral range was demonstrated in tissue-mimicking phantoms made of
Intralipid and Indocyanine Green (ICG). ICG is an optical tracer with distinct spectral features
in the NIR window of 650 – 950 nm and is often used as a light absorber in tissue-mimicking
phantoms [39–42]. Further, ICG is FDA approved and has been used in a variety of clinical
applications [43], including assessment of hepatic function [44,45], evaluation of skin-flap
viability [46,47], and quantitative perfusion assessment (e.g., dynamic contrast-enhanced near-
infrared spectroscopy) [48–55]. For future reference, we report the extinction coefficient spectrum
for ICG in Intralipid over a broad spectral range (710 – 830 nm). Further, through the addition of
ICG to the bottom compartment of a two-layer phantom, we highlight the TR spectrometer’s
ability to quantify absorption changes in deeper (>1 cm) tissue layers.

2. Methods

2.1. Spectrometer design

A schematic of the TR spectrometer is shown in Figure 1. The output of a pulsed supercontinuum
laser (SuperK Extreme K94-120-02, NKT Photonics, Denmark) is transmitted through two
spectral filters (FEL0700, FES0950, Thorlabs Inc., NJ) to limit the emission bandwidth to 700 –
950 nm. The filtered beam is then attenuated by a neutral density filter (NDF; NDC-50C-4M-B,
Thorlabs Inc.) and sent to a microscope objective (RMS10X, Thorlabs Inc.) that couples it into
an emission probe (fiber bundle, D = 3.7 mm, NA = 0.55, Fiberoptics Technology Inc., CT). The
emission fiber bundle is attached to a 3D-printed probe holder for positioning on a sample. A
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custom-made round-to-linear detection fiber bundle (D = 1.55 mm [round], 0.25 mm × 7.50 mm
[linear], NA = 0.55, ScienceTech Inc., Canada), also fixed to the probe holder, receives diffusely
reflected light from the sample and guides it to a concave holographic diffraction grating (f = 100
mm, 520 lines/mm, 16 nm/mm dispersion, ScienceTech Inc.) which resolves the spectral content
of the reflected light. The spectrum produced by the diffraction grating is then sent to a digital
micromirror device (DMD; DLi4130 .7” VIS XGA High-Speed Development Kit, active area
W × H = 14.2 mm × 10.7 mm, Digital Light Innovations, TX). The DMD contains a 2D array
of micro-mirrors which can be individually tilted to either reflect light towards ("ON" position)
or away ("OFF" position) from the detector. The DMD is used to spatially encode the signal
from the diffraction grating and direct it through a series of lenses (LB1309-B, LB1723-B,
LA1134-B, LA1951-B, magnification M = 0.4, Thorlabs Inc.) that focus the light onto a PMT
(H7422P-50, active area D = 5 mm, Hamamatsu Photonics, Japan) coupled to a TCSPC module
(SPC-130; Becker & Hickl GmbH, Germany). To avoid accidental detector saturation between
measurements, a manually-controlled shutter is installed in front of the PMT.

Fig. 1. Schematic of the hyperspectral TR system used in the study. Light from a pulsed
supercontinuum laser is bandlimited by two filters (F1, F2), attenuated by a neutral density
filter (NDF), and coupled into an emission fiber using a microscope objective (L1). Detected
light is then dispersed by a diffraction grating and re-directed by a DMD into a series of
lenses (L2 – L5) which focus the light onto a PMT coupled to a TCSPC module. The
resulting output is a 3D TR spectrum.

For all measurements, the active array of the DMD was positioned to reflect the 700 – 915
nm wavelength range from the diffraction grating. However, due to the limited area of both
the shutter aperture and the entrance window of the photosensor module containing the PMT,
adequate signal was only obtained in the 710 – 830 nm range.

2.2. Data acquisition

The signal reflected from the diffraction grating is a time-dependent 2D distribution of light
intensity I(x, y, t) whose wavelength λ only varies in x (Fig. 1). During data acquisition, pre-
selected binary patterns were sequentially displayed on the DMD so that only a section of the
spectrum I(x, y, t) was reflected towards the detector. For each pattern displayed on the DMD, a
DTOF of the detected photons was measured. As a result, the full dataset produced by a single
acquisition could be represented by a 2D matrix Y whose rows contained the DTOFs measured
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for each of the displayed patterns (i.e., each row contained one DTOF and only one DTOF was
acquired per pattern). The sequence of binary patterns was chosen such that I(x, y, t) was spatially
sampled only in the x direction. As such, the signal was binned in the y dimension and the final
spectra were only functions of x and t. The simplest example of such a sequence of patterns is a
stack where only a single column of mirrors in the y dimension is "ON" for any given pattern.
This column is then shifted one unit in the x dimension for each subsequent pattern. With such a
sequence, the spectrum would be wavelength-scanned and no additional image processing would
be needed. More generally, the sampling of I(x, y, t) by an N-sized stack Φ of 1 × N sampling
patterns (i.e., a measurement matrix ΦN×N) can be represented as

Y = Φ
∫
∆y

I(x, y, t)dy (1)

where the signal is spatially integrated over the height of the DMD (∆y) since the patterns only
sample the spectrum in x.

One method to recover the spectrum Î(x, t) from the data in Y is by performing a basis scan, i.e.,
choosing the sampling patterns which make up Φ from a known basis (e.g., Hadamard, Fourier,
wavelet) [56–59]. Using this approach, Î(x, t) can be recovered through a simple inversion:

Î(x, t) = Φ−1Y (2)

While a basis scan offers simple image reconstruction, it typically suffers from lengthy acquisition
times since, at a minimum, the number of acquired measurements must be equal to the number
of desired data points. However, since NIR spectra acquired from tissue primarily contain
broad, low-frequency spectral features, we expect that these spectra could be sparsely represented
in the spectral domain. Under such conditions, a compressed sensing (CS) approach could
be implemented where, for M ≪ N, an M-sized stack Φ of 1 × N sampling patterns (i.e., a
measurement matrix ΦM×N) is derived from a chosen basis and used to sample the spectrum.
Î(x, t) could then be recovered by solving a minimization-optimization problem [37,57]. In this
article, both the full basis scan and compressed sensing approaches were investigated. For the
compressed sensing approach, Î(x, t) was recovered using a total variation minimizing algorithm
(TVAL3) [60], which is a common linear solver for CS signal recovery [57,59,61].

For the methods described above, the quality of signal recovery depends on the choice of basis
used to generate the sampling patterns in Φ. We chose Φ to contain Hadamard basis patterns
ranked from lowest to highest spatial frequency since, when used to reconstruct spatially-varying
DTOF data, this basis has been shown to match or outperform a variety of other choices [59].
However, the implementation of Hadamard patterns has several practical challenges. First,
Hadamard patterns are composed of ±1 elements. Given that it is not physically possible to
directly implement both these element values onto a DMD, the measurements were acquired using
a differential Hadamard single-pixel sampling approach [58]. Specifically, one measurement was
acquired with a basis pattern in which −1 elements were replaced with 0’s, a second measurement
was acquired using the pattern’s inverse, and the difference of the two measurements was taken.
While this approach doubles the total number of measurements, it is also known to have superior
noise suppression properties [58,62]. Second, there exists a boundary diffraction effect at the
edges of "ON" mirrors. As such, the light energy collected from two adjacent mirror lines is
not necessarily equal to two independent measurements of those lines and may lead to spectral
inaccuracies following reconstruction. This inaccuracy can be mitigated by splitting every single
pattern into two even-only and odd-only column components, which ensures that no two adjacent
lines in any pattern will be "ON" [63].

Thus, the data acquisition protocol used 4N measurements to obtain one uncompressed
acquisition of an N-point spectrum. Since acquisition time was not a major limitation for our
application, spectral accuracy and noise suppression were prioritized. However, many other
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implementations—including different choices of Φ—can be used to optimize the system’s
performance if needed. Note that for all the results reported herein, we acquired 256-point
spectrums (i.e., N = 256), which was a good compromise between achieving adequate spectral
resolution and the number of required measurements (4N = 4 × 256 = 1024 measurements).

2.3. System characterization

Prior to characterization, the TR spectrometer was spectrally calibrated using a neon lamp. Four
peaks with known wavelengths (724.5, 753.58, 794.32, and 811.5 nm) were identified in the
measured spectrum and their wavelength values were fixed. The wavelengths of the remaining
252 points in the spectrum were then determined by linearly interpolating between these known
wavelengths. As a result, each I(x, t) value was mapped to a corresponding I(λ, t) value. To
validate this calibration procedure, the spectrum of the same neon lamp was measured with a
calibrated commercial CW spectrometer (QE65000, Ocean Optics, FL) for comparison.

For system characterization, the DTOF collection time was set to 1 s, the laser power was
adjusted until a count rate of 800 kHz was obtained, and an instrument response function (IRF)
was acquired by placing a thin piece of white paper between the emission and detection probes.
The IRF was then measured again after 9 hours of continuous system operation to assess the
system’s stability. Each IRF was first acquired using a full basis, and then re-acquired using a
compressed basis built from the first 96 basis patterns (i.e., M = 0.375N for N = 256).

2.4. Phantom experiments

To test the ability of the TR spectrometer to measure the absorption coefficient of turbid media
over a wide spectral range, experiments were conducted in tissue-mimicking phantoms using
Intralipid–20%(Fresenius Kabi AG., Germany) as a scattering agent and ICG as a light absorber.
The liquid phantom was placed in an opaque PVC container consisting of a shallow, removable
top layer (10 × 10 × 4 cm, L × W × H) which was separated by a thin, transparent plastic film
from a deeper bottom layer (10 × 10 × 7 cm, L × W × H). The bottom layer of the phantom
contained an injection port and a magnetic stir bar to allow the addition of ICG to the Intralipid
solution during an experiment without needing to remove the phantom’s top layer. Before each
set of phantom measurements, a neon lamp spectrum was acquired to calibrate the spectrometer
as described in Section 2.3. After each phantom experiment, a second neon lamp spectrum was
acquired to confirm the spectral stability of the system over the experimental period. In addition,
the system’s IRF was also acquired before and after the experiment to assess temporal stability.

For the first set of measurements, the top layer of the phantom was removed, and the bottom
compartment was filled with a 0.8% Intralipid solution created by diluting Intralipid–20% with
distilled water. The emission and detection probes were then fixed to the 3D-printed probe holder
(Fig. 1) at a distance of 28 mm. The holder was attached to a Manfrotto articulated arm (Vitec
Imaging Solutions, Italy) to position and maintain the probe tips on the surface of the Intralipid
solution. After acquiring a baseline measurement, the phantom’s absorption coefficient was
modified by adding ICG and mixing the solution for 60 s using a magnetic stirrer. The solution
was then allowed to settle for 60 s before another measurement was acquired. This process was
repeated for a total of 4 ICG additions (Table 1). Similar to the IRF measurements in Section 2.3,
each phantom measurement acquired with a full basis was repeated using a compressed basis for
comparison.

For the second set of measurements, the top layer of the phantom was filled with 0.8% Intralipid
solution to a height of 12 mm, placed over the bottom layer, and each step of the protocol above
was repeated. Note that the probe tips were positioned on the surface of the Intralipid solution in
the top layer. For clarity, we will hereafter refer to the first and second set of measurements as
homogeneous and two-layer phantom measurements, respectively.
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Table 1. Concentration of ICG in the bottom layer of the
two-layer phantom after each ICG addition.

ICG addition ICG concentration in bottom layer of phantom (nM)

1 77

2 154

3 232

4 387

2.5. Data analysis

Prior to reconstructing Î(λ, t), each measured DTOF was denoised using a previously reported
signal denoising algorithm [64]. Two different approaches were then used to reconstruct Î(λ, t)
from the full and compressed acquisitions (see Section 2.2). These reconstructions were compared
using the structural similarity (SSIM) index

SSIM(x, y) =
(2µxµy + C1)(2σxy + C2)

(µ2
x + µ

2
y + C1)(σ

2
x + σ

2
y + C2)

(3)

where C1 and C2 are regularization constants, and µx, µy, σx, σy and σxy are the local means, the
standard deviations, and cross-covariance for reconstructions x, y [65].

For the homogeneous phantom, absorption (µa) and reduced scattering (µ′s) coefficients were
estimated using the diffusion approximation [66]. Given that an experimentally measured DTOF
can be expressed as a convolution between the system’s IRF and the temporal point-spread
function (TPSF) of the phantom (i.e., DTOF = IRF ∗ TPSF), the IRF at each wavelength was
convolved with the model solution to produce a theoretical DTOF. Next, a nonlinear optimization
routine built using the fminsearch [67] function in MATLAB 2020a (The MathWorks Inc., Natick,
Massachusetts, 2020) was used to fit each of the measured DTOFs with a theoretical DTOF by
finding the set of µa and µ′s values that provided the optimal fit. Fitting was conducted in several
rounds to reduce error in the final µa values. First, the routine was used to fit for µa, µ′s, and
an amplitude term at all wavelengths. Second, the amplitude term was fixed to its mean value,
and the data was re-fit for just µa and µ′s. The wavelength-dependent µ′s estimated from all the
DTOFs was then fit with the power law [68]

µ′s(λ) = a
(︂ λ
785

)︂−b
(4)

where λ is the wavelength, a is the scattering amplitude, b is the scattering power, and 785 nm
has been used as a reference wavelength. The fitted µ′s were then fixed for the last round of
fitting, from which we obtained the final µa values. To reduce the effect of noise on the data
analysis, the fitting range was set to 50% and 5% of the peak value on the leading and falling
edges, respectively [69]. Changes in absorption due to the addition of ICG to the phantom were
calculated as

∆µa,j(λ) = µa,j(λ) − µa,IL(λ) (5)

where µa,IL(λ) and µa,j(λ) are the absorption coefficients for λ at baseline (i.e., the solution with
Intralipid only) and after the jth ICG addition, respectively.

The fitting approach described above is the most common method used for estimating µa
of homogeneous turbid media; however, when applied to a layered medium, the presence of a
superficial top layer skews the sensitivity of the derived optical properties [70]. Therefore, to
determine the µa values of the two-layer phantom, a two-layered analytical solution was used
[71]. First, the optical properties of the top layer were estimated by fitting the DTOFs measured
at baseline (i.e., only Intralipid in both phantom layers) using the homogeneous fitting approach
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described above. Next, the DTOFs measured at each ICG addition were fit with a theoretical
DTOF obtained by convolving the system’s IRF with a theoretical TPSF for a two-layer medium.
Each layer’s optical properties were set to an initial guess and a constrained nonlinear optimization
routine (fminsearchbnd, MATLAB, The Mathworks Inc.) was used to change model parameters
until an optimal fit was reached. As with the homogeneous phantom data, all fitting was done
from 50% to 5% of each DTOF’s peak value on the leading and falling edges, respectively. For
both layers, amplitude and µ′s were fixed to the properties determined by fitting the baseline
data using the homogeneous fitting approach. The µa values obtained from the homogeneous
fitting were also used as the initial guess for µa in the phantom’s top layer and constrained to vary
within ±10% of their initial value. For the bottom layer, the initial guesses for µa were estimated
from a linear regression on the tail of the logarithm of each DTOF and left unconstrained during
the fitting routine. Changes in the absorption of the bottom layer due to the addition of ICG
were then computed by subtracting the baseline µa values from the µa values obtained with the
two-layer fitting approach.

For comparison, the experimental DTOFs at each wavelength were temporally integrated (to
obtain a dataset equivalent to CW NIRS), and the modified Beer-Lambert law was applied to
calculate the change in µa between baseline and each ICG addition. Optical pathlength was
estimated for each wavelength as the product of the speed of light in the medium— assuming
a refractive index of n = 1.4—and the first normalized moment of each DTOF (i.e., the mean
photon time-of-flight) [72].

3. Results

3.1. System characterization

Figure 2 displays two spectra from the same neon light source, measured by a spectrally calibrated
CW spectrometer and the TR spectrometer. Since the spectral source is a low-pressure lamp,
the linewidths of its emission spectrum are very narrow and can be neglected when estimating
the spectral resolution; under this assumption, the measured spectrum will be limited by the
spectrometer resolution. Therefore, the theoretical spectral resolutions of the TR and CW
spectrometers were calculated to be 6.0 nm and 4.7 nm, respectively, which are in agreement with
the FWHM values in Table 2. The mean difference in the positions of four other peaks that were
not used for calibration was 0.68±0.35 nm. Figure 3(A) shows raw and denoised versions of a
DTOF measured from a single DMD pattern during an IRF acquisition. The group of raw DTOFs
measured for a full set of patterns (N = 256) were used to reconstruct a "raw" IRF whose 750 nm
component is shown in Fig. 3(B) (as detailed in Section 2.2). Similarly, a "denoised" IRF, whose
750 nm component is shown in Fig. 3(B) was reconstructed using denoised DTOFs. The curves
in Fig. 3(B) illustrate how denoising raw data affects the quality of a reconstructed IRF. Fig. 3(C)
compares the denoised 750 nm IRF from Fig. 3(B) to IRFs reconstructed from compressed
acquisitions where only DTOFs for the first 12.5% (M = 32) and 37.5% (M = 96) of patterns
were acquired. The strong qualitative resemblance between all three IRFs in Fig. 3(C)—even
though the IRFs from compressed acquisitions were reconstructed using substantially less data
than the one from the full acquisition—highlights that the majority of the data necessary for IRF
reconstruction can be measured using only a small subset of patterns. In other words, the data is
inherently sparse. Notably, Fig. 3(D) depicts the relationship between measurement compression
and information loss for this dataset by plotting the SSIM index between IRF acquisitions with
various compression levels. Note that while Figs. 3(B) and 3(C) show reconstructions of the
same IRF at a single wavelength, Fig. 3(D) presents results that were averaged across IRFs at all
wavelengths. Figure 4(A) shows a temporally-integrated IRF—equivalent to a spectrum acquired
with a traditional CW spectrometer—reconstructed using denoised DTOFs. While DTOFs
were denoised prior to IRF reconstruction, the temporally integrated spectrum still contained
high-frequency oscillations. To limit the effect of these oscillations on the data, the spectrum



Research Article Vol. 12, No. 10 / 1 Oct 2021 / Biomedical Optics Express 6449

underwent additional spectral denoising [64]. Note the consistency of the denoised spectrum:
only a minor spectral shift (less than 1 nm) was detected after 9 h of continuous system operation.
Fig. 4(B) compares the spectrally denoised spectrum from Fig. 4(A) to spectra reconstructed from
compressed IRF acquisitions which have not been spectrally denoised. The qualitative similarity
between the three curves shows that spectra reconstructed from compressed acquisitions are
well-suited for capturing broad spectral features while also inherently suppressing undesirable
high-frequency oscillations. This effect was confirmed by plotting the SSIM index between
temporally-integrated IRF spectra—for both the original and the spectrally denoised case—from
acquisitions with various compression levels (Fig. 4(C)). Figure 5 displays a plot of the system’s
full IRF in 3D, along with its projection onto the spectral dimension (equivalent to a spectrum
that would be obtained with a typical CW spectrometer), and components of the IRF at a few
wavelengths (equivalent to multi-wavelength TR measurements). Interestingly, Fig. 5(C) shows
notable differences in the propagation of different wavelengths through the spectrometer, with
shorter wavelengths being detected at slightly later times. This is likely due to the angle of
the DMD relative to the PMT which resulted in shorter wavelengths having a longer overall
pathlength through the instrument compared to longer wavelengths. The presence of these
differences illustrates the importance of rigorous characterization of the IRF at each wavelength
before performing further quantitative analysis.
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Fig. 2. Comparison of spectra from the same neon lamp measured by a calibrated commercial
CW spectrometer and the TR spectrometer.
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Fig. 3. Examples of DTOFs measured from a single DMD pattern during an IRF acquisition
(A), components of IRFs reconstructed using full (N = 256) datasets of such DTOFs (B),
and components of IRFs reconstructed using compressed (62.5%: M = 96; 87.5%: M = 32)
datasets (C). (D) shows a comparison of the structural similarity (SSIM) index between
denoised IRF components reconstructed using a full dataset and the same components
reconstructed with various compressed datasets; results averaged across all IRF wavelength
components (mean SSIM ± standard deviation) are shown alongside those for a single
wavelength (750 nm).

Fig. 4. Examples of spectra (obtained after temporal integration of the system’s IRF): (A)
shows the effect of denoising a spectrum reconstructed from a full acquisition (N = 256)
while (B) compares the denoised spectrum from the full acquisition to non-denoised spectra
obtained from reconstructions of its compressed acquisition counterparts (62.5%: M = 96;
87.5%: M = 32). The SSIM index between spectra acquired at various levels of compression
is shown in (C) for the cases where the spectrum from the full acquisition is and isn’t
spectrally denoised.
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Fig. 5. 3D plot of the IRF in (A), its projection onto the spectral dimension (i.e., collapsed
across its temporal dimension) in (B), and IRF components at a few wavelengths (as in a
typical multi-wavelength TR system) in (C). Note that the spectrum in (B) is equivalent to a
spectrum that would be obtained with a typical CW spectrometer.

Table 2. Comparison of the FWHM of 4 neon spectral peaks measured by a
spectrally calibrated commercial CW spectrometer and the TR spectrometer. Note
that the positions of these peaks were used for the spectral calibration of the TR

spectrometer.

Peak position (nm) CW spectrometer (FWHM in nm) TR spectrometer (FWHM in nm)

724 4.7 6.1

753 6.7 8.3

794 4.9 6.3

811 4.9 6.2

3.2. Phantom experiments

The results of the homogeneous phantom experiments are presented in Fig. 6. Fig. 6(A) shows
µa obtained by fitting the baseline measurements (i.e., phantom filled with Intralipid only) and
the measurements obtained after one ICG addition. Dashed lines indicate the µa obtained from
fitting the compressed measurements (37.5% compression rate; M = 96) for both phantoms and
µa values for water [73] are also shown for reference. Note the similarity between the shape of
the absorption spectrum of the Intralipid phantom and the reference water spectrum, which is not
surprising given that the phantom was composed of 99.2% water by volume. To compare full
and compressed acquisitions, we estimated the scattering amplitude and power of the Intralipid
phantom by fitting Eq. (4) to Intralipid solution µ′s spectra measured from the two acquisition
methods. The resulting values were in good agreement (full: a = 0.82, b = 0.69; compressed:
a = 0.82, b = 0.72) as were the absorption spectra obtained using the two acquisition methods
(Fig. 6(A)). This agreement is also seen in Fig. 6(B) which shows the four ICG spectra for the
compressed and full acquisitions; note that these have been isolated by subtracting baseline
absorption from phantom absorption following ICG addition. To assess the consistency of the
shape of the recovered spectra, the mean and standard deviations of ICG curves normalized to
their mean value were calculated (Fig. 6(C)). Fig. 6(C) also includes reference spectra for ICG in
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water and blood plasma [73]. It should be noted that the presence of Intralipid appears to alter
the shape of the ICG spectrum compared to its spectrum in water: similar to the spectrum of
ICG in plasma, there is a shift of the spectrum’s peak towards longer wavelengths (Fig. 6(C)).
Finally, using the four ICG spectra acquired with a full basis along with the concentrations from
Table 1, the molar extinction coefficient for ICG in 0.8% Intralipid was calculated (Fig. 6(D));
note that the provided values follow the convention for decadic absorbance. For future reference,
the numerical values of the ICG extinction coefficient are provided in Data File 1 [74] within the
supplementary material.

Fig. 6. Results of measurements on a homogeneous 0.8% Intralipid (IL) phantom with
various concentrations of ICG; ICG addition numbers are shown in square brackets (see
Table 1 for concentrations). (A) shows µa spectra for a variety of phantom states and
acquisition types; a water spectrum is also included for reference. (B) shows ∆µa between
various ICG additions and baseline IL absorption (i.e., µa of ICG). The average shapes
of spectra reconstructed from both full and compressed acquisitions (37.5% compression
rate) are compared to spectra of ICG absorption in water and in blood plasma (C); note
that, for ease of visualization, all curves in (C) are normalized by their mean value. (D)
shows a plot of the molar extinction coefficient of ICG in 0.8% Intralipid calculated from
the full acquisition curves in (B); see Data File 1 [74] for underlying values of the extinction
coefficient.

Figure 7 shows the change in µa (i.e., ∆µa) in the bottom compartment of a two-layer phantom,
calculated using the two approaches described in Section 2.5. Each subplot from Fig. 7(A) – D
corresponds to the spectra obtained for one of the ICG additions in Table 1. The corresponding
spectra acquired in the homogeneous phantom at the same ICG concentration are shown for
reference. All spectra were reconstructed from full acquisition data (N = 256), except for the
yellow dashed curves reconstructed from compressed acquisitions (37.5% compression rate;
M = 96). In all cases, the ∆µa estimated using a fit to a two-layer analytical model was much
closer to the ground truth—represented by the bottom layer absorption coefficient—than the ∆µa
estimated using the Beer-Lambert law, which assumes a homogeneous medium. Overall, good
agreement between the reconstructions from the compressed and full acquisitions was observed
at all ICG concentrations. However, Figs. 7(A) and B, show that spectra reconstructed from
compressed acquisitions tend to have higher absorption near their peaks compared to spectra
reconstructed from full acquisitions. The ∆µa spectra obtained by fitting the full-acquisition data

https://doi.org/10.6084/m9.figshare.14736876
https://doi.org/10.6084/m9.figshare.14736876
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using the two-layer analytical model are displayed in Fig. 7(E), and show increased absorption
as a function of the added amount of ICG. Similar to Fig. 6(C), Fig. 7(F) shows the mean and
standard deviation of ∆µa spectra from full and compressed acquisitions normalized to their
mean value; these are compared to the normalized spectrum from the homogeneous phantom
experiments. Compared to the spectra from the homogeneous phantom, the spectra from the
bottom of the two-layer phantom have a slightly higher standard deviation, particularly between
820 – 830 nm. Spectra from the homogeneous phantom and the bottom layer of the two-layer
phantom exhibit a similar shift towards a typical spectrum of ICG in plasma compared to a
typical spectrum of ICG in water.

Fig. 7. Measurements acquired from two-layer 0.8% Intralipid (IL) phantoms at various ICG
concentrations in the bottom layer. (A) – (D) show ∆µa spectra recovered for the phantom’s
bottom layer with each subplot representing a different ICG addition (addition numbers
indicated in square brackets; see Table 1 for concentrations). Spectra were recovered by
using a two-layer analytical model to fit results from full (Two-layer model) and compressed
acquisitions (Two-layer model - compressed; 37.5% compression rate). In addition, spectra
calculated using the Beer-Lambert law as well as spectra acquired on the homogeneous
phantom (i.e., the ground truth) are shown. (E) shows only the spectra recovered from full
acquisition data using the two-layer analytical model. The average shapes of the spectra
reconstructed from both full and compressed acquisitions are shown along with the average
shape of the spectra from the homogeneous phantom results (F); note that, for ease of
visualization, all curves in (F) are normalized by their mean value.
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4. Discussion

TR spectrometers are powerful analytical tools that can measure both the temporal and spectral
responses of turbid media to optical probing. This rich spectral and temporal information content
can be used to get more accurate estimates of light absorber concentrations in these media.
Moreover, given the broad spectral features of the main NIR light absorbers in tissue, CS can be
used to substantially reduce both measurement time and dataset size in TR-NIR spectroscopy
with minimal loss of critical information. To this end, this work introduces a CS-capable TR
spectrometer characterized using a calibrated spectral source and demonstrates its ability to
measure chromophore concentrations in homogeneous and layered tissue-mimicking phantoms.

Spectral characterization of the TR spectrometer using a neon light source showed good
qualitative (Fig. 2) and quantitative (Table 2) agreement with a calibrated CW spectrometer.
Nevertheless, some subtle spectral features were not resolved by our system. For example, the
spectrum measured by the CW unit clearly shows two small peaks at 735 nm and 747 nm, and a
higher one at 750 nm, which are not resolvable in the spectrum acquired by the TR spectrometer.
These differences are likely due to a trade-off between spectral range and resolution inherent to
the spectrometer’s design: the finite spectral width reflected by the thinnest lines of our chosen
DMD patterns imposes a limit on the system’s spectral resolution. Given the broad spectral
features of interest for typical biomedical applications (e.g., absorption features of hemoglobin,
ICG, and cytochrome c oxidase), the impact of these subtle spectral differences is expected to
be minimal. If required for other applications, the resolution could be improved by selecting a
diffraction grating with higher dispersion; however, this may limit the spectral range measured in
a single acquisition.

The results presented in Figs. 3(A) and B showed that denoising raw DTOFs prior to data
reconstruction substantially reduced noise in reconstructed DTOFs. Due to the statistical nature
of TCSPC, the quality of raw DTOFs was expected to improve as DTOF collection time was
increased. In practice, we found that collection times in the 300 – 1000 ms range provided a good
trade-off between measurement quality and acquisition time. Even after temporal denoising,
high-frequency oscillations could be seen in temporally integrated spectra; however, the overall
shape of the spectra remained stable even after 9 h of continuous operation and, if needed, these
oscillations could easily be removed using spectral denoising (Fig. 4(A)). Notably, spectral
denoising had an important impact on the similarity between spectra reconstructed from full
acquisitions and their compressed counterparts: following spectral denoising, both the qualitative
(Fig. 4(B)) and quantitative similarity (Fig. 4(C)) between a full acquisition and a compressed
acquisition that used only 12.5% of the total raw measurements was negligible. In contrast,
comparison of a non-denoised (i.e., raw) spectrum to its counterparts acquired with compressed
acquisitions resulted in a noticeable SSIM index drop-off (Fig. 4(C)). This clearly demonstrated
that broad spectral features—which remain after spectral denoising—are highly conserved
when applying a compressed sensing approach, which is one of the key advantages offered by
the configuration in Fig. 1. Overall, a good qualitative and quantitative agreement between
reconstructions from full and compressed datasets across both the temporal (Figs. 3(C) and D)
and spectral dimensions (Figs. 4(B) and C) was found.

Consistency between spectra acquired using compressed sensing and basis scan approaches was
also confirmed by the homogeneous phantom experiments (Fig. 6(A)). As expected, the absorption
spectrum of the phantom filled with 0.8% Intralipid showed similarities to a reference water
spectrum. Each addition of ICG increased the phantom’s µa across all measured wavelengths;
similar µa values (Fig. 6(B)) and spectral shape (Fig. 6(C)) were obtained from both compressed
and full reconstructions. Further, the standard deviation of the recovered ICG spectral shape was
low, which highlighted the spectrometer’s ability to recover a consistent spectral shape for a variety
of chromophore concentrations. However, the differences between the ICG absorption spectra
reconstructed from full and compressed acquisitions increased at higher concentrations (Fig. 6(B)),
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which was likely due to lower measurement signal-to-noise ratio (SNR) at higher absorptions.
As described in Section 2.5, we note that wavelength-dependent effects of the device’s IRF on
the measured spectra were taken into account through convolution during the fitting procedure
and that the amplitude term used in the fitting to account for attenuation/amplification factors
(e.g., NDF, fiber coupling) was not expected to have a noticeable wavelength dependence.

In general, the absorption spectrum of ICG is known to depend both on its concentration and
its solvent [39,73]. Yuan et al. previously measured absorption coefficients of 0 to 2.0 µM ICG
in 0.6% Intralipid at 660, 780, and 830 nm [40]. One of their key findings was that the absorption
of ICG in Intralipid at 830 nm was higher than its absorption at 660 nm. This is different
from the absorption of ICG in water and is consistent with shifting of the ICG spectral shape
towards longer wavelengths as observed herein (Fig. 6(C)) and in previous studies which used
higher concentrations of ICG [39]. Further, Yuan et al. calculated that ICG’s molar extinction
coefficient (εICG,λ) at 780 and 830 nm fell into the 1.49 × 105<εICG,780<2.49 × 105cm−1M−1 and
3.26 × 104<εICG,830<7.69 × 104cm−1M−1 ranges, respectively; these ranges are in agreement
with our measured mean molar extinction coefficient values of 1.60 × 105cm−1M−1 and 5.31 ×

104cm−1M−1. Note that we have divided the εICG ranges originally published by Yuan et al.
by ln(10) to follow the convention of decadic absorbance. Gerega et al. [75] also observed
an approximately 12.5 nm shift towards longer wavelengths in the fluorescence spectrum of
ICG in 1% Intralipid compared to ICG in water at a 170 nM ICG concentration. Though
changes in absorption spectra were not investigated by Gerega et al., the observed shift in the
fluorescence spectrum is consistent with an analogous shift in the absorption spectrum of ICG.
Considering that similar spectral shifting has been noted in ICG-plasma solutions [73] and is
generally attributed to ICG adsorption to plasma proteins, Du et al. previously inferred that this
effect may be related to the binding of dye to Intralipid particles [39]. Overall, the results of
the homogeneous phantom experiment demonstrate the TR spectrometer’s ability to recover
absolute µa values in a turbid, homogeneous medium across a range of wavelengths using both
basis scanning and compressed sensing approaches. For future reference, we report the molar
extinction coefficient of ICG in 0.8% Intralipid (Fig. 6(D)) calculated from the 4 full acquisitions
obtained at the concentrations in Table 1.

One of the most important advantages of TR spectroscopy is the ability to remove the
contribution of superficial layers when investigating chromophore absorption in deeper layers.
The two-layer phantom results presented in Figs. 7(A) – D demonstrate the advantage of the
TR approach by contrasting relatively small bottom layer absorption changes obtained using
the Beer-Lambert Law with the larger changes obtained using a fit to a two-layer TR analytical
model. Utilizing the more sophisticated model allows recovery of µa values much closer
to the ground truth acquired directly from the bottom layer. Nevertheless, this method still
incorrectly estimates µa with an average error of 24±5% across all wavelengths and ICG additions.
Interestingly, though spectra recovered from compressed acquisitions generally resemble those
from full acquisitions, they more closely matched the ground truth µa values after the first few
ICG additions; this resulted in a slightly lower overall µa recovery error (21±7%). Similar to
the homogeneous phantom results, each ICG addition increased the phantom’s µa across all
measured wavelengths (Fig. 7(D)) with a similar spectral shape for both the compressed and full
reconstructions (Fig. 7(E)). Nevertheless, the ICG spectrum recovered for the final ICG addition
had a slightly different shape than the previous spectra, as reflected in its lower than expected
absorption in the 730 – 770 nm range. Further investigation revealed that this discrepancy was
due to crosstalk between the top and bottom layer absorptions recovered by the two-layer fitting
approach. Specifically, a notably higher top layer absorption was recovered between 730 – 770
nm for this ICG concentration, compared to the three others. Since no changes to the top layer
were made throughout the experiment, this discrepancy is likely due to the lower SNR at this
higher ICG absorption, which resulted in lower data quality and, subsequently, less consistent
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fitting results. As in the homogeneous phantom experiments, the recovered spectra were shifted
towards longer wavelengths compared to a typical ICG absorption spectrum in water. However,
in contrast to the shift seen in the homogeneous phantom, the red shift of the absorption spectrum
of the bottom layer was smaller and—in the 710 – 750 nm range—more closely matched a shifted
ICG-water absorption spectrum.

The two-layer analysis presented in this work has previously been used to separate cerebral
hemoglobin concentrations and oxygen saturations from superficial contributions in both simu-
lations [76] and subjects [77]. One approach to estimate top layer properties is the use of an
additional measurement at a shorter S-D distance [77]. However, we avoided this approach since
the TR system used in the study was not designed for multi source-detector measurements, and
changing probe distances after setting up the phantom measurements could lead to larger errors
due to changes in coupling between the probes and the phantom. To further model the error in
the recovered bottom layer µa values, we conducted TR simulations in a two-layer slab using
NIRFAST [78,79]. The slab’s top layer (12 mm) and bottom layer (70 mm) optical properties
were set to the values recovered from baseline and post-ICG addition in the homogeneous
phantom, respectively. Next, the percent error in recovered µa values was calculated for three
scenarios of top layer thickness input into the analysis: correctly estimated, underestimated, and
overestimated (Table 3). In addition, for the case when the top layer thickness input was correct,
changes in the percent error due to the addition of random noise to the raw data (Table 3) was
also calculated.

Table 3. Percent error (%) in bottom layer µa values recovered from
various datasets simulated in NIRFAST for a two-layer slab model. After

simulating a base case (12mm top layer thickness and 0% noise—column
1), the effects of changing the top layer thickness estimate during data

analysis (columns 2 – 4) and adding noise to the data (columns 5 – 7) were
assessed.

Thickness (mm) Noise (%)

∆ 0 -2 2 5 10 25

Error (%) 6.2±2.5 32.6±7.1 50.0±30.0 5.6±3.2 8.1±2.6 11.2±3.8

Table 3 illustrates that the quality of the data, as well as errors in assumptions inherent to the
analysis itself, may have substantially contributed to the discrepancy in the recovered µa values
of Fig. 7. Nevertheless, the advantage of using TR data instead of typical CW data to recover
absorption changes in a turbid layered medium remain clear.

Compressive TR spectroscopy exploits the signal sparsity typically present in spectra of
chromophores which play key roles in biomedical applications. As shown by the similarity of
spectra acquired using basis scanning and compressed sensing approaches (Fig. 6 and Fig. 7),
this technique can be used to reduce measurement time and dataset size with minimal loss
of information. In addition, the use of the DMD to reflect diffracted light into the system’s
detector allows for a rapid and flexible way to selectively attenuate specific wavelengths by
manipulating what fraction of mirrors are "ON" in the y dimension (Fig. 1); this can be desirable
when attempting to resolve changes in weaker spectral lines surrounded by intense ones [80]. It
is important to note that, when used with a coherent light source, the periodic spacing of the
DMD’s micromirrors causes the DMD to act as a diffractive element [81]. Since diffraction is
wavelength-dependent, the diffraction orders produced by the spectral lines reflected from the
DMD will no longer maintain the same relative spacing as in the incident spectrum. However, the
spectrometer operates under a single-pixel paradigm, which means that the DMD is responsible
for spatially sampling the spectrum and establishing the spectral-to-spatial mapping. Given that
the aforementioned disruption to wavelength spacing occurs after this mapping is established it
should not affect the system’s spectral accuracy. Further, any influence this effect could have
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on the light intensity can be quantified by acquiring an IRF (Fig. 5). While the spectrometer
presented herein only investigated a spectral range of approximately 120 nm, this limitation
was mainly due to suboptimal coupling between the DMD and the photosensor module (see
Section 2.1). If needed, the device could be modified to accommodate a wider spectral range
by exchanging the detector for one with a larger active area, selecting a wider DMD for the
spectrometer, and optimizing the coupling between these two components. Further, while the
system had slightly coarser resolution than a CW spectrometer (Table 2), resolution can be
modified using finer or coarser DMD patterns during acquisitions. Future work will focus on
testing the system using a more comprehensive array of chromophores and configurations that
enable greater spectral ranges and resolutions. In addition, the system will be tested using more
sensitive detectors, which are likely to improve the system’s SNR and enable further reduction of
acquisition time.

5. Conclusion

This work presents the development of a compressive sensing TR spectroscopy system for
accurate quantification of light absorbers in turbid media. Notably, the system’s ability to
quantify the absorption coefficient of ICG in both homogeneous and layered tissue-mimicking
Intralipid phantoms was demonstrated. Further, the phantom results revealed that compressed
sensing matched or outperformed the traditional basis scanning method (i.e., uncompressed
measurements) in all cases. Using data from the phantom experiments, the extinction coefficient
spectrum for ICG in 0.8% Intralipid over a broad spectral range (710 – 830 nm) was determined.
Future work will focus on exploring a wider array of system configurations to accommodate
wider spectral ranges, improve the system’s SNR, and further reduce acquisition times before
testing the device for neuromonitoring.
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